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A complex modeled bursting neur¢@. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol.

66, 2107-21241991)] has been shown to possess seven coexisting limit cycle solutions at a given
parameter sdiCanavieret al,, J. Neurophysiob9, 2252—-22591993; 72, 872—882(1994]. These
solutions are unique in that the limit cycles are concentric in the space of the slow variables. We
examine the origin of these solutions using a minimal 4-variable bursting cell model. Painapse

are constructed using a saddle-node bifurcation of a fast subsystem such as our’ Rgiciiane

This bifurcation defines a threshold between the active and silent phases of the burst cycle in the
space of the slow variables. The maps identify parameter spaces with single limit cycles, multiple
limit cycles, and two types of chaotic bursting. To investigate the dynamical features which underlie
the unique shape of the maps, the maps are further decomposed into two submaps which describe
the solution trajectories during the active and silent phases of a single burst. From these findings we
postulate several necessary criteria for a bursting model to possess multiple stable concentric limit
cycles. These criteria are demonstrated in a generalized 3-variable model. Finally, using a less direct
numerical procedure, similar return maps are calculated for the original complex f@dél.
Canavier, J. W. Clark, and J. H. Byrne, J. Neurophy$6).2107—-21241991)], with the resulting
mappings appearing qualitatively similar to those of our 4-variable model. These multistable
concentric bursting solutions cannot occur in a bursting model with one slow variable. This type of
multistability arises when a bursting system has two or more slow variables and is viewed as an
essentially second-order system which receives discrete perturbations in a state-dependent manner.
[S1054-150(98)02001-1

Autonomous bursting systems are characterized by peri- transient input, such as an externally applied current pulse.
ods of repetitive activity punctuated by periods of quies- Experimental examples include bursting and beating states in
cence. Physical examples of such systems include the invertebrate neurofiS and two spiking stategwith different
BelousowZhabotinsky-reaction and electrically excitable  frequencies in turtle motoneuron8. Several of these ex-
cells, such as pancreatig8-cells and neuron R15 in the amples have also been the subject of theoretical stidies.
abnominal ganglion of the aquatic molluscAplysia or sea  Birhythmicity has also been demonstrated in a variety of
hare. Recent studie$® of a model of neuron R15 have  modeled biochemical systerfisVe distinguish birhythmicity
shown that at certain parameter ranges the model pos- from the more generabistability: the coexistence of two
sesses as many as eight stalteexistingperiodic bursting  stable solutions, where typically one solution is at equilib-
solutions. This is by far the most extreme example of riym and the other is periodic. There are many neuronal
multirhythmicity in an autonomous system. We develop a mgdels which exhibit bistability?

technique to locate these regions of multirhythmicity and More recent theoretical studies have provided examples
investigate the nature of these solutions in a simple model ot model systems that possess three or more stable coexisting
of an excitable bursting cell. The origin of the multi-  ,geijiatory states, also known asultirhythmicity Three co-
rhythmicity is hypothesized and demonstrated in a gen-  gyiqting oscillatory states have been demonstrated in a mod-

eral model as well as a more complex bursting modéllt o piochemical systeft. Multirhythmicity has also been
is possible that other bursting systems with at least tWo o onstrated in both integrate-and-fire and Hodgkin—

slow variables may possess regions of parameter space Huxley neural models with delayed feedbd@kCanavier

with similar types of multiple bursting solutions. et al>® have demonstrated possibly the most intriguing no-
tion of multirhythmicity in an autonomous system. In their
| INTRODUCTION studies of a model of neuron R15 Aplysia® it was found

) ) o that within certain parameter regimes the model possessed as
A variety of neural preparations exhibit the phenomenonyany as eight coexisting oscillatory solutions. These solu-

of birhythmicity. the coexistence of two stable periodic solu- tions could be switched between by an appropriately timed
tions without any changes in the parameters of the dynamicghpyt stimulus and were unique in that the limit cycles were
system. These solutions may be switched between by a brighncentric in the state space of the two slow variables.
In this study we seek to address the origin of the multi-
dElectronic mail: butera@helix.nih.gov stable periodic solutions demonstrated by Canaeieal?
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We believe that this form of multirhythmicity arises from Ca&* associated with each action potential. To keep our
properties unique to a specific class of bursting systems, andodel simple we did not explicitty model this current.
refer to it asmultirhythmic burstingThis paper is organized Rather, we introduced a term into E@t), ky,, Which dy-

as follows. We start by introducing a minimal 4-variable namically achieves a similar effect, since the dynamidsgf
bursting neuron model based on a mechanism of burstingre such that it is activated briefly but strongly with each
similar to the model of Canaviest al! Recent work on the action potential.

geometry of the solution space of modeled bursting neurons

is reviewed:*'*and we define a one-dimensional return mapji|. COMPUTATIONAL METHODS

based on this geometry. We illustrate the existence of four , ) ) o
coexisting bursting solutions in our model using our return All numerical S|mulat|ons of our mmmal pell quel use
maps. Numerical computations of the one-dimensional returH1e parameter se_t in the App_endlx,_wrﬂg indicated in the
map and its decomposition into two submaps provide severdfX fqr eachl S'WUIat'On‘ Simulations Qf the model of
insights into the origin of multirhythmic bursting. Minimal Canavieret al” utilize the model as published withsriu
mechanisms are proposed by which a bursting system exhib- 1.3 nA. , , ,

its multirhythmicity, and these mechanisms are demonstrated Spftware for numerical smulaﬂons was develope_d on
in a general 3-variable dynamical system. Finally, a relate entium or RS/6000 based Linux or UNIX workstations.

method of generating one-dimensional return maps is applie emporal numerical integration of solution trajectories was
to the model of Canavieet al The bursting solutions por- accomplished with software written in C and utilizing the

trayed in Canavieet al? are identified and it is shown that ngmerlcal mtegr.atlon .packagev ODE.” CVODE may be ‘?b'
their model possesses a one-dimensional return map that Hglned from http://netlib.cs.utk.edu/ode/cvode.tar.Z. Bifurca-

gualitatively similar to the map derived from our minimal tion d|agrams were cqmputgd using the Interactive ordinary
differential equation simulation packagepr, which has an

model. ) . . )
interface to the bifurcation analysis software package
AUTO.2Y xpP is available at ftp://ftp.math.pitt.edu/pub/
Il. A MINIMAL BURSTING MODEL bardware.

The endogenously bursting neuron R15Aplysia has
been modeled extensively/11%13puilding upon over 40 1V. THE GEOMETRY OF BURSTING

years of electrophysiological investigatiofsThe model RinzeP? introduced a geometric approach toward ana-

presented here is not intended to be a complete phySiOIOgic?zing the solution of models of bursting cells with a single
model. Rather, we wished to develop the simplest modef|qy, yariable. This work was extended by Rinzel and*fee
possible which captured fche essential dynamics of the morgy ~onsider bursting models with two slow variables.
complex model of Canaviest al* o A typical limit cycle oscillation for Egs.(1)—(4) is

Our model consists of only four ionic currents, and  ghown in Figs. 1A1)—(A3). Our analysis exploits the fact
I, the fast Na and delayed-rectifier K currents, are re- 4; two variables operate on a time scale much slower than

sponsible for the generation of action potentials. Burstingy,o remaining variables of the mod&l.andw vary over a
occurs vials, a C&" current that is activated by a slow ime scale of milliseconds, while and's vary over a time

voltilge-d_ependent_variable and inacti\+/ated by intracellulagcgie of seconds and hundreds of milliseconds, respectively.
Ca - This current is opposed Hy , a K” leakage current. \yg refer to the FAST subsystem as E@. and (2) with ¢
The differential equations of the model are ands treated as parameters. Our analysis further exploits that
V=Ina(V) + (VW) +16(V,8,C) +1 (V) —l4pp, (1) faCt thatc and s parametrize the FAST subsystem via a
single functional expression

W= oy (Woo (V) — W)/ 7 (V), 2 —

W= (T Y @ gees=gssl(1+ o), ®

5= (Sx(V) —9)/ 75, (3 wheregsg, is the conductance ofs,. We will refer inter-

- changeably to the FAST subsystem as parametrized one di-
c=—knalne V)~ Ksil si(V,5,€) — keC. @ geany Y P

mensionally bygg, or two dimensionally by ¢,s). A bifur-

The change in membrane potentialis proportional to the cation analysis of the FAST system is illustrated in Fig.
sum of the ionic fluxes across the membrane, assuming thafB1). For low values ofyg,, the FAST system has a stable
the neuron is isopotential. All conductances have been norquilibrium solution defining a manifold#SS At larger val-
malized to the capacitance of the cell membrane, which doeses ofgg,, the FAST system possesses a stable oscillatory
not appear as a parameter in the model. Action potentials aolution manifoldAP. This manifold begins at a Hopf bifur-
generated by the fast Naand K" currents, based on the cation and terminates at the knee of the equilibrium solution
minimal model of Morris and Lecdf'°The variablesv and  branch wheregs;=gyc. gnc denotes the location of a ho-

s represent the voltage-dependent inactivationlgfand  moclinic saddle-node bifurcation and defines the boundary
voltage-dependent activation ofg,, respectively. The between the/SSand AP manifolds.

change in concentration of intracellular Ca c, is due to Figure IB2) is a close-up view of the boxed area of Fig.
influx via C&" currents and efflux via Ga diffusion and  1(B1) and illustrates the superposition of the solution trajec-
extrusion. The model of Canaviet al! explicitly models a  tory of the full systen[Egs.(1)—(4)] in the (gs;,V) plane.
fast C&" current which is responsible for a rapid influx of Figure XC) illustrates VSSand the solution trajectory in
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FIG. 1. Bifurcation analysis of bursting limit cycléA1)—(A3). Membrane potential, intracellular €aconcentration, and voltage-dependent activation of

I, respectively(B1). Bifurcation analysis of Eq$1) and(2) asgg, (a function ofc ands) is varied. Stable equilibrium solutions represented by solid lines;
unstable equilibrium solutions by dashed lines. The periodic solution branch emanates from a Hopf bifurcation and is represented by the minimum and
maximum of the oscillatiorfiopen circles The hyperpolarized equilibrium solution branch and periodic solution branch are |A&8shd AP, respectively.

(B2). Blown-up inset of pane(B1). Solution trajectory in terms afg(c,s) andV is superimposedC). Solution trajectory in ¢,s,V) space VSSsurface

indicated by solid linesHC (gyc(c,s)) by dashed line, and ands nuliclines, labeledC., and S, respectively, o'vVSSby dotted lines.

(c,s,V) space. The dashed lit¢C identifies the location of >gyc). The burst continues untHC is again crossed and
the saddle-node bifurcation incs,V) space and the the solution trajectory relaxes back SS(gs<guc)-
nuliclines forc ands (labeledC., andS,,, respectivelyare A more compact view of the dynamics of the model is
superimposed oWVSS During the silent phase of the burst illustrated in Fig. 2, which illustrates the solution trajectory
cycle, the solution trajectory lies oSS and the dynamics of Fig. 1 in (c,s) space. The dotted lines are the equilibrium
collapse to a second order system with Eds.and (2) at  nuliclines, the dashed line HC, and the dash-dotted lines
steady state as a function ofands. On crossingHC (i.e., are the averaged nuliclines. Each point of an averaged
Osi=0nc) the model begins firing a burst of action poten- nullcline is a value of ¢,s) where the appropriate equation
tials as long as the solution trajectory remains/AR (gg, [Eq. (3) or (4)] averaged over one period 8P is approxi-
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0.6 - Sav_ to HC2 and points alongHC2 map to HC1, respectively.
P Thus f(c)=h(g(c)). These maps are obtained by calculat-
N Cay,. ing the location in state space whef€?2 is crossed when
P using the above procedure to calculée).
v é/’ & There exists a degree of inaccuracy in these mappings.
Figure XB2) illustrates that the trajectory does not lie ex-
actly onVSSwhen the solution trajectory crossggc from
VSSto AP (i.e., HC1 is crossefl Even more significantly,
when the trajectory crossegg,c from APto VSS(i.e.,HC2is
crossedl the trajectory does not immediately jump to the
equilibrium surface. By modifying the above procedure to
allow one complete burst cyclge., successive crossings of
direction HC2 andHC1) to occur before calculating the map, most of
of motion this error is eliminated, and the maps accurately define peri-
odic bursting solutions. Maps generated in this manner will
be denotedf (c). The accuracy of these maps were further
verified by two additional measures: maps calculated inde-
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e
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0.2

0.1 | T , | . | pendently from subsequent burst cycles superimposed iden-
01 015 02 025 03 035 04 tically, and second-return maps calculated in a procedure
¢ (uM) analogous to that just described superimposed identically
o _ _ _ _ with numerically iterated first-return maps. The disadvantage
FIG. 2. Origin of first-return maps. Solutlon_ trajectory from Fig. 1 displayed of this approach is that the points on the map are confined to
in (c,s). Also shown are equilibrium nullclineotted,C.q and S;), av- - . . :
erage nullclinesdash-dottedC,, andS,,), and saddle-node bifurcatiotc ~ the domain of attraction of the bursting solutions and do not
(dashedl First-return mapf(c) maps crossings dfiC from VSSto AP to allow the entire state space to be sampled evenly. When
successive crossings. This map is further decomposedj{pandh(c), ; i i diati
where f(c):h(g(c)g). For thep limit cycle iIIus‘t)rateggc(lzbf(cl),( 22 Vlgwed over a large s_calfe(c) andf (c) are nearl.y indistin-
—g(cy), andc,=h(c,). guishable. Thus’.(c)~W|II be used for most mappings shown
in this study, whilef (c) will be utilized when the map is
examined at a fine scale.

. ) The use of these maps is only appropriate for locating
mateily equgl to zer&~2°In summary, bursting occurs as the bursting solutions. In many parameter regions a beating so-
solution trajectory crosses back and forth actd€s When |ytion may coexist. The existence of a stable beating solution
gsi<Quc, the model dynamically collapses to a second-may phe implied by the existence of regions of discontinuity
order system ing,s) which lies onVSS Whengs>guc, i f(c), i.e., those initial conditions oHC1 that never cross
the dynamics are still largely determined dwands, but they HC1again. However, such featuresfdt) are not necessary
are subject to periodic perturbations due to the firing of actor 5 stable beating solution to exist, and the existence of
tion potentials. In the classification scheme of burstinggych a solution must be verified by alternative means. For
neurons,**° our model is a type Il burster. example, stability analysis of the intersection of the averaged

Let HC1 define a set of points alonglC such that jiclines is typically sufficient to predict the stability of the
dgs,/dt>0. SinceHC1 is one dimensional, we may utilize beating solutior®

as our index alongdC1. It can be shown that there exists a

pointc, such thaHC1 s a continuous curve consisting of all

points alongHC where c<c,. Likewise, let HC2 define

points alongHC wherec>c,, . Bursting solution trajectories \, ReSULTS

crossHC1 when crossing from th#SSto AP manifold (e.g., _ )

point ¢; in Fig. 2). Likewise, bursting solutions crogdC2 A From bursting to beating

when crossing from th&P to VSSmanifolds(e.g., pointc, Canavier et al?® illustrated several pathways from a

in Fig. 2. Let f(c) define a one-dimensional map which single bursting limit cycle to a single beating limit cycle as a

describes how points alorgC1 return toHC1 This map is  parameter is varied. These pathways involved varying con-

generated numerically as follows: The bifurcation analysis ofjuctances and or the applied current. Typically, as a param-

the FAST subsystem provides a numerical estimate of theter was varied, the dynamics progressed from a single stable

location of the kneedyc,Vyc). For a given value of, set  pursting limit cycle to a multirhythmic state with many co-

the model to the initial condition¥=Vyc, W=W.(Vhc),  existing bursting solutions to a single stable beating solution.

ands=gyc/gg(1+ Bc). This is the location in state space We have observed similar pathways in our minimal model.

of a point alongHC1. Numerically integrate the model until For the results shown here we choage the time constant

HCL1lis again crossed and calculate the value @fhere the  of the slow variables, as our bifurcation parameter. We have

solution trajectory returned tliC. Repeat this process for a chosen this parameter for ease of presentation: The FAST

range of values of alongHCL. subsystem bifurcation diagratincluding the calculation of
The mapf(c) can be decomposed into two submaps,HC) and steady-state solution manifold® andVSSdo not

g(c) andh(c), which describe how points alontdC1 map depend on this parameter. Thus the nullclinekZ and
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A 1T = — ith initial conditions onHC1 that contain 10 action poten-
§ 300 ms B. Ts 400 ms uIs, the curve segment to the right, 8 action potentials.

03 ' 0.3 Tl As 74 is increased from 300 ms, each curve segment
~ 025 —~ 0.25 ' £ 3comes more U-shaped aft) become_s less flat. Figure
% % S R RT B) illustratesf(c) when 7,=400 ms. This map also has a
= 0.2 = 0‘2.,&,'\) i A A \,t,\}\. ngle stable fixed poirblack arrow. This figure elucidates

e 0.15 y © 0.15 e nature of a transition between limit cycles witrand n
1 action potentials as a parameter is varied. The stable
0.6_1 015 03 055 03 0. 101502 05503 :gd point in_paneI(B) .corresponds to a Iin_1it cycle with 8
c c ition potentials. As is decreasedf(c) shifts downward
ompare with panelA)]. This downshift inf(c) increases
C e slope off(c) at the fixed point. A local examination of
T e map shows that it loses stability via a period-doubling
0.3 i H furcation. A new stable fixed point emerg@sear white
0250 P43 row) corresponding to a stable limit cycle solution with 9
14 stion potentials. This solution coexists with the period-2
= 02 slution with 8 action potentials. As, is further reduced, the
° 0.15 e 0.15 xriod-2 solution with 8 action potentials continues to lose
ability via a period-doubling route and eventually disap-
0.6_1 01503 05503 06'1 0.15 02 025 03 rars. This transition occurs over a harrow range of param-
¢ (UM) c (UM) ers. However, the general mechanism appears ubiquitous,
least within the context of our model. We have, via nu-
_ erical simulation, located several parameter regimes where
E. TS =550 ms F. Ts = 600 ms period-1 bursting limit cycle witm+1 action potentials
031 114 0.3\A/\/\/\/\/\M 1d a period-2 bursting limit cycle with action potentials
AO.25\}§ —~ 025 )-exist. We have identified similar transitions between
% % irsting limit cycles ofn and n+1 action potentials as a
= 0.2 = 02 wrameter is varied in the bursting model of Rinzel and
015 ° 0.5 e . .
As 74 is further increased,(c) becomes more divergent
1d the curve segments at higher values ofe toward the

%015 02035 03 00T 01502025 03
¢ (M) ¢ (uM)

entity line. In Fig. 3C), the map consists of only unstable
‘ed points. There exists a region of the m@pdicated by
the square boxthat is an attractor, i.e., the rangefdt) is a
subset of the domain. Trajectories that enter this region never
leave. The solution trajectory consists of successive bursts of
anywhere from 2 to 6 action potentials, with the nature of the
burst corresponding to which curve segmentf¢f) each
iterate(i.e., successive burst cyglfalls on. This is one form
of chaotic dynamics exhibited by the mdde- a chaotic
attractor which spans burst trajectories that contain a varying
number of action potentials per burst. We refer to this mode

FIG. 3. First-return map$(c) for various values of;. Solid arrows indi-
cate stable fixed points. See text for description of open arrow.

steady-state solution surfaces shown in Fig8)41(C) and
2 are valid for all values of.— only the solution trajectories
vary with 7.

Figure 3 illustrates the numerically calculated m#fws)
for six different values ofr;. Panel(A) illustrates the map of activity as global chaotic bursting.
obtained using the value of corresponding to the bursting At a higher value ofrg (515 ms, not shown f(c) shifts
limit cycle solution illustrated in Figs. 1 and 2. This map upward slightly and the fixed point at the lowest value arf
possesses a single stable fixed pdintack arrow and is  Fig. 3(C) (c~0.225) becomes stable. In this case a stable
relatively flat(i.e., contractive with most initial conditions  bursting limit cycle exists, but convergence is quite slow for
converging to the fixed point quickly. The most noticeableinitial conditions onHC1 where 0.225:¢<0.32. We at-
feature of the map is that it consists of many apparentltribute this to the existence of several marginally unstable
discrete, smooth curve segments. Each curve segment fixed points inf(c). Trajectories with initial conditions in
separated by a steep transition region which requires exhis region may take many cycl€®0 or morg before finally
tremely high resolution to map at low values &f. Further  converging to the stable bursting limit cycle. We have found
examination of the data, supported by numerous simulationsarameter regions of the model of Canaweml? that also
from a variety of initial conditions, revealed that within each exhibit this phenomena.
curve segment the first-return trajectory contains an identical For some parameter valué€Big. 3D), 7.=529.1 m$
number of action potentials. For example, the curve segmerft(c) possesses multiple stable attracting solutigniack ar-
containing the fixed point contains all burst trajectories withrows). This map will be examined in greater detail shortly.
initial conditions onHC1 that contain 9 action potentials. As 7 is further increasedf(c) starts to contract and the
The curve segment to the left contains all burst trajectoriesiumber of fixed pointgstable or unstabjedecreases, with
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032, 0312 where the range of (c) is a subset of the domain. Each of
N W IV s i : 7 : e
ﬂ i " 5O g ons these regions is reminiscent of an upside-down logistics map
' R M i § \ 1 " 2 0304 . . t . ”
0.3 i. ivooiy g e and acts as a dynamic equivalent of a “potential well” —
. l \ : " ! oms once the limit cycle trajectory maps into this region it cannot
L% T T Y | S ol ; leave. These attracting regions of the map without stable
% : i‘ ; i ' @ ot X fixed points suggest chaotic dynamics, illustrated by the cor-
S0y '\I' P responding ¢,s) trajectories in Fig. 5. Additional numerical
i’ \/ < oml d simulations have verified the stability of each of these re-
024 %m \ e gions of attraction. While each attractor may appear to have
o mg;z;u chaotic dynamics, the number of action potentials within
0256 ) each burst is identical from cycle to cycle. This contrasts
022 .
~ £ o with the global chaotic bursting described earlier as a result
022 0% %Z?HM)“S 03 03z e | of an attracting region that spanned over several curve seg-
025 0.253 0256
< (o ments off(c).

FIG. 4. First-return mayf (c) for 7,=529.1 ms. To the right of the figure - : ; :
are expanded views of the boxed regions |-IV. Each of these regions idenc-:' Origin of multirhythmic bursting

tifies a corresponding limit cycle in Fig. 5. What dynamical features of our bursting model give rise
to return maps with multiple stable attractors? The state-
space dynamics of the model fall into two regions. When the
trajectory lies onvSS it is dynamically a second-order sys-
tem. When the trajectory lies oAP, the dynamics of the
model are still largely determined by and s, subject to
sperturbations associated with the firing of each action poten-
tial. We now decomposef] c) into two separate mapg(c)
andh(c), wheref(c)=h(g(c)). Thusg(c) describes how

B. Multirhythmic solutions points onHC1 map toHC2 and h(c) describes how these
trajectories return teiC1 as a function of where they crossed
HC2. Figure 6 illustrategy(c) andh~(c) for each of the

els 1-1V illustrate .closeup views of four regions Eif(p). corresponding (c) maps shown in Fig. 3. In each panel of
Each of these regions corresponds to a stable bursting solﬁg. 6, the intersections a§(c) andh~1(c) correspond to

tion. These four solutions are illustrated in Fig. 5. Panel | Ofthe fixed points illustrated in Fig. 3. We will often refer to

Fig. 4 illustrates a stable fixed point and corresponds to thﬁ1e slope ofh(c) in the following paragraphs, even though

period-1 solution Igbeled | in Fig. 5. Panels II-IV do not Fig. 6 illustratesh~1(c). ’

illustrate regions off (c) with stable fixed points. Rather, in There is a certain degree of inaccuracy in our calculation

each of these panels is illustrated a local regionf¢€)  of h(c). Ideally, we would take initial conditions oRIC2
and calculate how those trajectories magHtG1l. However,
as indicated earlier, on crossittC2 the solution trajectory
does not instantaneously jump froi to VSS For this rea-
son we have calculatetl(c) as described earlier, so that
g(c) andh(c) truly represent a decomposition bfc) that
was calculated numerically.

The segmentation df(c) is evident in the segmentation
of g(c) as well. Each curve segment gfc) corresponds to
those paths frontC1 to HC2 that contain an identical num-
ber of action potentials. However, unlikéc), as 7 is in-
creased, there is little change in the shapg(@). As 7 is
increasedg(c) actually becomes more contractive, contrary
to the change iri(c). The maph(c) undergoes a significant
change in shape as is increased. Whem,=300 ms[panel
(A)], h(c) is very contractive — most initial conditions on
HC2 map to a narrow region dfiC1 In this case the seg-

» mentation ofg(c) is irrelevant, sincéa(c) maps most points
8 ¢ (uM) 32 ‘ on HC2to a single curve segment bfC1, and only a single
stable limit cycle exists. Agy is increasedh(c) becomes

_ _ _ ) _ . more dispersive and the dispersive regiorh where its
FIG. 5. Multirhythmic bursting. Trajectories -1V correspond to similar slope is Srftee}ﬁhifts toward hip her valugs «rf(lez]lES asr. is
labeled regions off (c) in Fig. 4. Trajectories |I-IV are chaotic. Insets P 9 : ’ S

illustrate time course of membrane potential for each solution. For eacﬁ’ariedvh(c) eﬁeCtiYely Sweep$ acroggc). The interaCtio_n
inset, the scale bar indicat@ s and 20 mV. of these two functions gives rise to the complex maps illus-

most of f(c) existing above the identity line. In Fig(B), a
single burst solution(with two action potentials per bupst
exists. Finally, in Fig. &), f(c) no longer possesses any
stable fixed points. A stable beating solution exists at thi
parameter set, implied by discontinuitiesfifc).

Figure 4 illustrates the map(c) for 7.=529.1 ms. Pan-
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A. 7, =300 ms B. T, =400 ms
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defined by a combination of two slow variables. Thus
there is a continuum of values of,8) (i.e., HC) where
the burst may begin or end.

(2) Each action potential has a discrete and sizable effect on
one or more of the slow variablebore generally, the
dynamics of the fast variables happen on such a fast time
scale that their effects on one or more of the slow vari-
ables appear as discrete impulse-like events.

(3) A single burst should not have “too many” action po-
tentials. This concept is model dependent. Criteria 2 and
3 gives rise to a situation where the dynamics of the
system in the space of the slow variables is not accu-
rately predicted by simply averaging the effects of the
action potentials on the slow variab&sThese two cri-
teria cause the noticeable segmentatiomy(af).

(4) The dynamics of the slow variables on VSS should not
converge to a strongly attracting limit cycl®lany mod-
eled bursting systems are constructed by adding a fast
procesgi.e., action potentia)sto a slowly varying limit
cycle®?7|n such models, the solution trajectory during
the silent phase of the burst cycle converges to the limit
cycle solution that exists in the absence of action poten-
tials (i.e., gna=0). However, in such situations we
would expecth(c) to be highly contractive, as all initial
conditions onHC2 would converge to the limit cycle of
the subthreshold oscillation during the silent phase of the
bursting limit cycle. Ifh(c) is strongly contractive then,
as illustrated in Fig. @\), only a single limit cycle will
exist. In both our model and the model of Canavier
et al! multirhythmic bursting solutions exist at param-
eter ranges where a subthreshold oscillation does not
persist when y, is removed from the model.

D. A general model

h(c)~* are illustrated for each parameter value. See the text for details on  \\/e sought to implement the above criteria in the sim-

the calculation ofy(c) andh(c).

trated in Figs. 8C) and 3D). As 7 is further increasedy(c)
continues to shift towards higher values @f reducing the
number of intersections witg(c) [and thus the number of
fixed points off(c)].

plest possible dynamical system. Our model consists of three
variables. The two slow variables andy form a second-
order underdamped linear system. The only fixed point of the
second-order system is a fixed point at the origin that be-
haves as a weakly stable focus. This system is coupled to a
fast phase variabl@ defined over the range 0 ton2 The
dynamics of this variable are dependentyoitWheny<O0, 6
converges toward a stable fixed point. Whgr 0, 6 in-

It is possible to do an exhaustive examination of the flowcreases at a rate that is dependentyoriWhen 6 passes
field of (c,s) to more rigorously determine the nature of through a critical valué.,; , it feeds back onta andy via
g(c) andh(c). However, the results up to this point allow us @ Dirac delta function to perturbandy. The formulation of
to postulate several sufficient criteria for a bursting model tof is similar to that presented in Baet al?* The complete
be capable of exhibiting multirhythmic solutions of the type Set of equations for the general model is:

described here and in Canavigral >3

(1) The system must have two slow variables models

with a single slow variable bursting arises by coupling

6=w; (1—cog 6)+Y), (6)

$(=ax+,8y+ 6(0— ecrit)rp COS(HD)’ @)

the slow variable to a bistable FAST subsystem. Hyster- .

esis is employed so that the solution trajectory alternates ¥~ BX=ay+ 5(6= berie)Tp SIN(6p), (8)
between the equilibrium solution branch and the periodiovhere 6 is the Dirac delta function and=0.03, =1, w;
solution branch of FAST. In such bursting models with a=25, 6= /2, r,=0.1, andé,=7/72. Compared to our
single slow variable, the burst typically begins and endaninimal bursting modely=0 is analogous td1C. Just as

at specific values of the slow varialffeln our minimal
model the burst begins and ends at a specific valugg; pf

the frequency of firing of our FAST system starts at zero and
increases agg, is advanced pagiyc, the frequency of is
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variation of the model of Canaviet al! This modef pos-
sesses a state space geonfésimilar to the minimal model
presented in this paper, with the key differences between the
two models described below. Furthermore, we have deter-
mined that the state-space of the model of Buitral. is
geometrically similar to the model of Canaviet al® (un-
published observatiohs

The analysis of our minimal model exploited the fact
that the two slow variables combined to parametrize the sys-
tem of fast variables in a single functional expression. This
single quantity defined the location biC in (c,s) and was
used as our Poincargection. Unfortunately, the model of
Canavieret al! has several other currentfor example, a
Ca& " -extrusion pump and a NaC&* exchangerwhich are
also dependent on the slow varialaleln this caseHC can-
not be expressed by a single functional expressionarids
and must be numerically calculated at any given value of
(c,s). Such a calculation is quite possible, but utilizing this
numerically calculated curve as a Poincaeetion in €,s) is
much more tedious. HoweveHC is nearly isopotential,
varying only by a few mV across the dynamic range @ind
s. Thus we defined our Poincasection as positive crossings
of a predefined membrane potenti&l, whereV. is a value
close to but less than the minimal value € (in V) over

the dynamics range ofc(s) to be investigated. Initial con-
-1 , ‘ : ‘ ditions were chosen along the line formed by the intersection
Tx ' of the planeV. with the surfaceV/SS These were calculated
for a given value ot by settingV to V.., all other variables
tories of eight coexisting bursting solutions in the phase space of the twexceptS to their steady-state valudwhich are defined in
slow variab?es< andy. Pgnels I—\ﬂll illustrate the timpe coursg of siyfor ?,erms ofv andc) ands to the value necessary to ensure that
the corresponding solutions in par@). (B). First-return map obtained by V=0 (the definition of points orvVSS. Parameters of the
using positive crossings of=0 as a Poincareection. The scale bar in  model were set identical to those used to generate Fig. 2 of
panel VIl indicates 2 s and 0.Funitless and is valid for panels 1-VIII. Ref. 2.

The mapd (c) were much less accurate at indicating the
initially 0 and increases asis advanced past 0. The param- dynamic activity of the model than the maps calculated using
etersr , and 6, describe the effect of each perturbation on the®U' minimal mOde'- Th|ls is due to several reasons. First, the
x andy variables. model of Canavieet al." possesses a coexisting beating so-

Figure 7A) illustrates the dynamics of the above systemlution, so for some initial conditions the solution trajectory
in (x,y) using the above parameter set. When numerically?€Vver crossed the Poincasection again. Second, it was nec-
integrating the above system, care was taken to not integrafSSary to adopt an ad-hoc criterion based on the value of
the solution trajectory across time points where the Dirac!V/dt to determine if crossings of. were due to the begin-
delta functions are triggered. The general model possesses 9 of & burst or successive firings of action potentials dur-
coexisting bursting solutions, labeled I-VIIl. The smallering the burst. Third, their model possesses two additional
panels at the right of Fig. 7 illustrate the temporal nature of SIow” state variables that are only active during the firing
each solution trajectory by plotting sif)(vs time. Figure Of action potentials and dec#gn a faster time scaldack to
7(B) illustrates a numerica”y calculated first-return map_steady'state values during the interburst interval. As before
This map was calculated by choosing as a Poinsaation these problems were alleviated by using the second burst
positive Crossings (ﬂ:O and is anak)gous to the mat(s;) CyCle from each initial condition to define the apprOXimate
calculated for our minimal model. first-return mapT(c). The accuracy of these maps was veri-
fied by comparing the second-return map obtained by iterat-
ing T (c) with the second-return map obtained analogous to

. : the procedure just described.
We wished to apply the techniques used to calculate Figure 8 illustrates the periodic burst solutions @9).

f(c) to the model of Canaviest al," a much more complex These solutions are labeled in a similar manner as Fig. 2 of
model with 11 state variables. The mechanism of bursting in 9

their model is based on two slow variablesands which ~ Ref- 2. The mapf (c) is showr.1 in Fig. $)j Region§ of _
modulate a slow-inward Ga current similar to that pre- f(c) enclosed by a box predict the bursting solutions in
sented in our minimal model. A FAST-SLOW analysis panel A and are shown as expanded insets at the right of the
similar to that described in Section IV was performed on afigure. In the insetsf (c) is represented by circles arfd(c)

FIG. 7. An idealistic model of multirhythmic burstingA). Solution trajec-

E. A complex biophysical model
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identified an additional bursting solution with the parameter
set studied in this paper which was not located by our algo-
rithm. None of these issues is a problem in our minimal
membrane model, which clearly identifies the beginning and
end of each burst by positive and negative crossings,ef,
which are easily calculated in terms ofands.

VI. DISCUSSION

In this study we have investigated multirhythmic burst-
ing in a minimal membrane model. From those results, we
proposed qualitative mechanisms that may combine to con-
tribute to this multistability and tested those mechanisms in a
general three-variable model. Finally, we demonstrated that
the multistable solutions exhibited by our membrane model
appear similar to those of the more complex model of
Canavieret al! In both models the multistable bursting so-
lutions are nested in the state space of the slow variables and

2
0252 0255 0258
¢ (M)

¢ M) differ by the number of action potentials in their limit cycles.

. . - , Both models also possess similar mafs).
FIG. 8. Multirhythmic bursting in the model of Canavier al. (Refs. 1 and o diff b H , lculated f both
2) (A). Six co-existing bursting solutions in the phase space of the two slow ne difference between tHgc)’s calculated from bot

variablesc ands. Similar to Fig. 2 of Canavieet al. (Ref. 2. (B). First- membrane models and the general model is the shape of each
return mapf (c) for the same parameter set. Boxed insets are blown up acurve segment. For the membrane models they are U-shaped:
right and correspond to the similarly labeled solution trajectories in paneinitial conditions at each end of a curve segment map to
(A). In the insetsf (c) is indicated by circles andi*(c) by plus signs. similar regions. The curve segments calculated for our gen-

eral model are more linear, although they do appear to round

up at the positive end of each segment. Quite certainly our
by plus signs. The most striking feature Bfc) is that itis ~ general model loses a bit of both complexity and realism by
gualitatively similar in shape to Fig. 4, although the numberapproximating the perturbational affects of the action poten-
of curve segments which cross the identity line is evertials as discrete perturbations. Terrfiahas performed a de-
larger. Each of the insets identifies mappings which are cortailed analysis of the transition between burstsnond n
sistent with the observed limit cycles shown in pag). +1 action potentials in a bursting model with a single slow
Trajectory | is a stable limit cycle and corresponds to a stabl&ariable. It is possible that a variation of his approach may
fixed point of T (c). Trajectories III, IV, and V are period-2 Shed some light on the nature of shape of each curve seg-
solutions. The corresponding insets reveal that each of thesgent.

solutions is confined to a region df(c) where the fixed It would be quite difficult to identify multistable bursting

point is marginally unstable, having recently undergone 4n a real biological preparations. Our results show that this is

. ) : . ~ a transitional phenomenon in the parameter space between
period-doubling bifurcation. The second return mdgsc) b P P

each possess two stable fixed points identifying the period- ursting and beating, and immediately adjacent to multi-
P X . P 9 P table regions in parameter space may be regions where no
solutions. The chaotic trajectories Il and VI correspond to

Ostable solution trajectories exist and the bursting is chaotic.
regions off (c) where the fixed points are unstable but the owever, the multistable solutions are surrounded in param-
mappingf (c) possesses an attracting region where the ranggter space by larger regions wheie) is still complex. In
of T(c) is a subset of the domain. The two curve segmentshese region$(c) has a similar shape and suggests that con-
between solutions | and Il contain neither fixed points norvergence to a stable limit cycle, if one exists, may take many
stable attracting regions. limit cycles. Our data reveghot shown that the length of
Our indirect approach for estimatin§(c) with the each burst cycle is somewhat determined by which curve
model of Canavieet al! may not find every possible burst- segment off(c) the current cycle started from. Thus it may
ing solution. Since our algorithm is based only on membrande possible to construct a map with a structure similar to
potential, it is necessary to determine the end of a burst s&(c) by biasing the neuron to a regime of irregular burst
that the following positive crossing of ;. is known to indi-  firing. In our model, the structure of such maps was most
cate the beginning of a new burst cycle. Whether a negativevident when plotting the duration of each interburst interval
crossing ofV, is the repolarization of an action potential or versus the duration of the interburst interval of the previous
the hyperpolarizing phase of the depolarizing after-potentiatycle. However, given the inherent variability of biological
(DAP, which occurs at the end of each buiistdetermined preparations, the data may not unambiguously reveal any
by the value ofdV/dt at the time of the crossing. W, is set  structure in such a map. An even simpler approach would be
too high, it is possible that the DAP never crosses it/lfis  to employ the method of symbolic dynami€stto analyze a
too low, it is possible that some burst trajectories in theirbursting time series for recurring patterns. In such an ap-
silent phase do not hyperpolarize beldty. Canavieret al2>  proach, the number of action potentials in each burst is as-
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signed a symbol. A time series of burst cycles is converted t@. Parameters and units
a string of symbols denoting the number of action potentials
in each burst. An examination of wordsubstrings of suc-
cessive symbojsmay reveal common words or forbidden
words. For example, it is evident from Fig. 4 that a burst of
n action potentials (&n<5) may only be followed by a
burst of 2 to minf+1,5) action potentials. Similar struc-
tures may be apparent in experimental recordings.

Even if such multistability was identified in a biological
preparation, it would be a suyi)ject of great speculationghow na=55 MV, B= =75 mV, Ec=120 mV, ap=—25 mV,
nervous system would exploit such a feature. However, thdw~ —20 MV, 8==45 mV, by=14 mV, b, =10 mV, b
features identified in this study could be exploited for man-— =2 MV, B=10.0uM %, ls7y=1.1 VIS, kna=1.2X10
made applications. Alternative formulations of our genera*M/MV: Ksi=2.5<10"> uM/mV, k;=5x10"" ms
model[primarily Eq. (6)] give rise to systems which would
be amenable to analytical treatment. These near-linear sys-C. C. Canavier, J. W. Clark, and J. H. Byrne, “Simulation of the bursting
tems could be easily implemented with existing integrated activity of neuron R15 irﬁplysjg Role of ionic.currents, calcium balance,
it components. It may be possible to design oscilltory, & "dEr tarsmitirs S Newepnyst 2107 220108
circuits that have many more than the 8 stable limit cycles gynamics in a model neuron provide a novel mechanism for transient
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