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Multirhythmic bursting
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A complex modeled bursting neuron@C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol.
66, 2107–2124~1991!# has been shown to possess seven coexisting limit cycle solutions at a given
parameter set@Canavieret al., J. Neurophysiol69, 2252–2259~1993!; 72, 872–882~1994!#. These
solutions are unique in that the limit cycles are concentric in the space of the slow variables. We
examine the origin of these solutions using a minimal 4-variable bursting cell model. Poincare´ maps
are constructed using a saddle-node bifurcation of a fast subsystem such as our Poincare´ section.
This bifurcation defines a threshold between the active and silent phases of the burst cycle in the
space of the slow variables. The maps identify parameter spaces with single limit cycles, multiple
limit cycles, and two types of chaotic bursting. To investigate the dynamical features which underlie
the unique shape of the maps, the maps are further decomposed into two submaps which describe
the solution trajectories during the active and silent phases of a single burst. From these findings we
postulate several necessary criteria for a bursting model to possess multiple stable concentric limit
cycles. These criteria are demonstrated in a generalized 3-variable model. Finally, using a less direct
numerical procedure, similar return maps are calculated for the original complex model@C. C.
Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol.66, 2107–2124~1991!#, with the resulting
mappings appearing qualitatively similar to those of our 4-variable model. These multistable
concentric bursting solutions cannot occur in a bursting model with one slow variable. This type of
multistability arises when a bursting system has two or more slow variables and is viewed as an
essentially second-order system which receives discrete perturbations in a state-dependent manner.
@S1054-1500~98!02001-1#
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Autonomous bursting systems are characterized by peri-
ods of repetitive activity punctuated by periods of quies-
cence. Physical examples of such systems include th
Belousov–Zhabotinsky-reaction and electrically excitable
cells, such as pancreaticb-cells and neuron R15 in the
abnominal ganglion of the aquatic molluscAplysia, or sea
hare. Recent studies2,3 of a model of neuron R151 have
shown that at certain parameter ranges the model pos-
sesses as many as eight stablecoexistingperiodic bursting
solutions. This is by far the most extreme example of
multirhythmicity in an autonomous system. We develop a
technique to locate these regions of multirhythmicity and
investigate the nature of these solutions in a simple mode
of an excitable bursting cell. The origin of the multi-
rhythmicity is hypothesized and demonstrated in a gen-
eral model as well as a more complex bursting model.1 It
is possible that other bursting systems with at least two
slow variables may possess regions of parameter spac
with similar types of multiple bursting solutions.

I. INTRODUCTION

A variety of neural preparations exhibit the phenomen
of birhythmicity: the coexistence of two stable periodic sol
tions without any changes in the parameters of the dynam
system. These solutions may be switched between by a

a!Electronic mail: butera@helix.nih.gov
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transient input, such as an externally applied current pu
Experimental examples include bursting and beating state
invertebrate neurons4,5 and two spiking states~with different
frequencies! in turtle motoneurons.6 Several of these ex
amples have also been the subject of theoretical studie7,8

Birhythmicity has also been demonstrated in a variety
modeled biochemical systems.9 We distinguish birhythmicity
from the more generalbistability: the coexistence of two
stable solutions, where typically one solution is at equil
rium and the other is periodic. There are many neuro
models which exhibit bistability.10

More recent theoretical studies have provided examp
of model systems that possess three or more stable coexi
oscillatory states, also known asmultirhythmicity. Three co-
existing oscillatory states have been demonstrated in a m
eled biochemical system.11 Multirhythmicity has also been
demonstrated in both integrate-and-fire and Hodgki
Huxley neural models with delayed feedback.12 Canavier
et al.2,3 have demonstrated possibly the most intriguing n
tion of multirhythmicity in an autonomous system. In the
studies of a model of neuron R15 inAplysia,1 it was found
that within certain parameter regimes the model possesse
many as eight coexisting oscillatory solutions. These so
tions could be switched between by an appropriately tim
input stimulus and were unique in that the limit cycles we
concentric in the state space of the two slow variables.

In this study we seek to address the origin of the mu
stable periodic solutions demonstrated by Canavieret al.2
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We believe that this form of multirhythmicity arises from
properties unique to a specific class of bursting systems,
refer to it asmultirhythmic bursting. This paper is organized
as follows. We start by introducing a minimal 4-variab
bursting neuron model based on a mechanism of burs
similar to the model of Canavieret al.1 Recent work on the
geometry of the solution space of modeled bursting neur
is reviewed,13,14and we define a one-dimensional return m
based on this geometry. We illustrate the existence of f
coexisting bursting solutions in our model using our retu
maps. Numerical computations of the one-dimensional re
map and its decomposition into two submaps provide sev
insights into the origin of multirhythmic bursting. Minima
mechanisms are proposed by which a bursting system ex
its multirhythmicity, and these mechanisms are demonstra
in a general 3-variable dynamical system. Finally, a rela
method of generating one-dimensional return maps is app
to the model of Canavieret al.1 The bursting solutions por
trayed in Canavieret al.2 are identified and it is shown tha
their model possesses a one-dimensional return map th
qualitatively similar to the map derived from our minim
model.

II. A MINIMAL BURSTING MODEL

The endogenously bursting neuron R15 inAplysia has
been modeled extensively,15,7,1,16,13building upon over 40
years of electrophysiological investigations.17 The model
presented here is not intended to be a complete physiolog
model. Rather, we wished to develop the simplest mo
possible which captured the essential dynamics of the m
complex model of Canavieret al.1

Our model consists of only four ionic currents.I Na and
I K , the fast Na1 and delayed-rectifier K1 currents, are re-
sponsible for the generation of action potentials. Burst
occurs viaI SI , a Ca21 current that is activated by a slow
voltage-dependent variable and inactivated by intracellu
Ca21. This current is opposed byI L , a K1 leakage current.
The differential equations of the model are

V̇5I Na~V!1I K~V,w!1I SI~V,s,c!1I L~V!2I app , ~1!

ẇ5fw~w`~V!2w!/tw~V!, ~2!

ṡ5~s`~V!2s!/ts , ~3!

ċ52kNaI Na~V!2kSII SI~V,s,c!2kcc. ~4!

The change in membrane potentialV is proportional to the
sum of the ionic fluxes across the membrane, assuming
the neuron is isopotential. All conductances have been
malized to the capacitance of the cell membrane, which d
not appear as a parameter in the model. Action potentials
generated by the fast Na1 and K1 currents, based on th
minimal model of Morris and Lecar.18,19The variablesw and
s represent the voltage-dependent inactivation ofI K and
voltage-dependent activation ofI SI , respectively. The
change in concentration of intracellular Ca21, c, is due to
influx via Ca21 currents and efflux via Ca21 diffusion and
extrusion. The model of Canavieret al.1 explicitly models a
fast Ca21 current which is responsible for a rapid influx o
nd

g

ns

r

rn
al

ib-
ed
d
d

t is

al
el
re

g

r

at
r-

es
re

Ca21 associated with each action potential. To keep o
model simple we did not explicitly model this curren
Rather, we introduced a term into Eq.~4!, kNa, which dy-
namically achieves a similar effect, since the dynamics ofI Na

are such that it is activated briefly but strongly with ea
action potential.

III. COMPUTATIONAL METHODS

All numerical simulations of our minimal cell model us
the parameter set in the Appendix, withts indicated in the
text for each simulation. Simulations of the model
Canavieret al.1 utilize the model as published withI STIM

51.3 nA.
Software for numerical simulations was developed

Pentium or RS/6000 based Linux or UNIX workstation
Temporal numerical integration of solution trajectories w
accomplished with software written in C and utilizing th
numerical integration packageCVODE.20 CVODE may be ob-
tained from http://netlib.cs.utk.edu/ode/cvode.tar.Z. Bifurc
tion diagrams were computed using the interactive ordin
differential equation simulation packageXPP, which has an
interface to the bifurcation analysis software packa
AUTO.21 XPP is available at ftp://ftp.math.pitt.edu/pub
bardware.

IV. THE GEOMETRY OF BURSTING

Rinzel22 introduced a geometric approach toward an
lyzing the solution of models of bursting cells with a sing
slow variable. This work was extended by Rinzel and Le13

to consider bursting models with two slow variables.
A typical limit cycle oscillation for Eqs.~1!–~4! is

shown in Figs. 1~A1!–~A3!. Our analysis exploits the fac
that two variables operate on a time scale much slower t
the remaining variables of the model.V and w vary over a
time scale of milliseconds, whilec and s vary over a time
scale of seconds and hundreds of milliseconds, respectiv
We refer to the FAST subsystem as Eqs.~1! and ~2! with c
ands treated as parameters. Our analysis further exploits
fact that c and s parametrize the FAST subsystem via
single functional expression

gSI~c,s!5 ḡSIs/~11bc!, ~5!

where gSI is the conductance ofI SI . We will refer inter-
changeably to the FAST subsystem as parametrized one
mensionally bygSI or two dimensionally by (c,s). A bifur-
cation analysis of the FAST system is illustrated in F
1~B1!. For low values ofgSI , the FAST system has a stab
equilibrium solution defining a manifoldVSS. At larger val-
ues ofgSI , the FAST system possesses a stable oscilla
solution manifoldAP. This manifold begins at a Hopf bifur
cation and terminates at the knee of the equilibrium solut
branch wheregSI5gHC . gHC denotes the location of a ho
moclinic saddle-node bifurcation and defines the bound
between theVSSandAP manifolds.

Figure 1~B2! is a close-up view of the boxed area of Fi
1~B1! and illustrates the superposition of the solution traje
tory of the full system@Eqs. ~1!–~4!# in the (gSI ,V) plane.
Figure 1~C! illustrates VSSand the solution trajectory in
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FIG. 1. Bifurcation analysis of bursting limit cycle.~A1!–~A3!. Membrane potential, intracellular Ca21 concentration, and voltage-dependent activation
I SI , respectively.~B1!. Bifurcation analysis of Eqs.~1! and~2! asgSI ~a function ofc ands) is varied. Stable equilibrium solutions represented by solid lin
unstable equilibrium solutions by dashed lines. The periodic solution branch emanates from a Hopf bifurcation and is represented by the min
maximum of the oscillation~open circles!. The hyperpolarized equilibrium solution branch and periodic solution branch are labeledVSSandAP, respectively.
~B2!. Blown-up inset of panel~B1!. Solution trajectory in terms ofgSI(c,s) andV is superimposed.~C!. Solution trajectory in (c,s,V) space.VSSsurface
indicated by solid lines,HC (gHC(c,s)) by dashed line, andc ands nullclines, labeledCeq andSeq , respectively, onVSSby dotted lines.
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(c,s,V) space. The dashed lineHC identifies the location of
the saddle-node bifurcation in (c,s,V) space and the
nullclines forc ands ~labeledCeq andSeq , respectively! are
superimposed onVSS. During the silent phase of the bur
cycle, the solution trajectory lies onVSS, and the dynamics
collapse to a second order system with Eqs.~1! and ~2! at
steady state as a function ofc ands. On crossingHC ~i.e.,
gSI5gHC) the model begins firing a burst of action pote
tials as long as the solution trajectory remains onAP (gSI
.gHC). The burst continues untilHC is again crossed and
the solution trajectory relaxes back toVSS(gSI,gHC).

A more compact view of the dynamics of the model
illustrated in Fig. 2, which illustrates the solution trajecto
of Fig. 1 in (c,s) space. The dotted lines are the equilibriu
nullclines, the dashed line isHC, and the dash-dotted line
are the averaged nullclines. Each point of an avera
nullcline is a value of (c,s) where the appropriate equatio
@Eq. ~3! or ~4!# averaged over one period ofAP is approxi-
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mately equal to zero.23–25In summary, bursting occurs as the
solution trajectory crosses back and forth acrossHC. When
gSI,gHC , the model dynamically collapses to a secon
order system in (c,s) which lies onVSS. WhengSI.gHC ,
the dynamics are still largely determined byc ands, but they
are subject to periodic perturbations due to the firing of a
tion potentials. In the classification scheme of burstin
neurons,14,26 our model is a type II burster.

Let HC1 define a set of points alongHC such that
]gSI /]t.0. SinceHC1 is one dimensional, we may utilizec
as our index alongHC1. It can be shown that there exists
point cp such thatHC1 is a continuous curve consisting of al
points alongHC where c,cp . Likewise, let HC2 define
points alongHC wherec.cp . Bursting solution trajectories
crossHC1 when crossing from theVSSto AP manifold ~e.g.,
point c1 in Fig. 2!. Likewise, bursting solutions crossHC2
when crossing from theAP to VSSmanifolds~e.g., pointc2

in Fig. 2!. Let f (c) define a one-dimensional map which
describes how points alongHC1 return toHC1. This map is
generated numerically as follows: The bifurcation analysis
the FAST subsystem provides a numerical estimate of
location of the knee (gHC ,VHC). For a given value ofc, set
the model to the initial conditionsV5VHC , w5w`(VHC),
ands5gHC / ḡSI(11bc). This is the location in state space
of a point alongHC1. Numerically integrate the model until
HC1 is again crossed and calculate the value ofc where the
solution trajectory returned toHC. Repeat this process for a
range of values ofc alongHC1.

The map f (c) can be decomposed into two submap
g(c) andh(c), which describe how points alongHC1 map

FIG. 2. Origin of first-return maps. Solution trajectory from Fig. 1 displaye
in (c,s). Also shown are equilibrium nullclines~dotted,Ceq andSeq), av-
erage nullclines~dash-dotted,Cav andSav), and saddle-node bifurcationHC
~dashed!. First-return mapf (c) maps crossings ofHC from VSSto AP to
successive crossings. This map is further decomposed intog(c) andh(c),
where f (c)5h(g(c)). For the limit cycle illustratedc15 f (c1), c2

5g(c1), andc15h(c2).
-

-
g

f
e
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to HC2 and points alongHC2 map to HC1, respectively.
Thus f (c)5h(g(c)). These maps are obtained by calcula
ing the location in state space whereHC2 is crossed when
using the above procedure to calculatef (c).

There exists a degree of inaccuracy in these mappin
Figure 1~B2! illustrates that the trajectory does not lie e
actly onVSSwhen the solution trajectory crossesgHC from
VSSto AP ~i.e., HC1 is crossed!. Even more significantly,
when the trajectory crossesgHC from AP to VSS~i.e.,HC2 is
crossed!, the trajectory does not immediately jump to th
equilibrium surface. By modifying the above procedure
allow one complete burst cycle~i.e., successive crossings o
HC2 andHC1! to occur before calculating the map, most
this error is eliminated, and the maps accurately define p
odic bursting solutions. Maps generated in this manner w
be denotedf̃ (c). The accuracy of these maps were furth
verified by two additional measures: maps calculated in
pendently from subsequent burst cycles superimposed i
tically, and second-return maps calculated in a proced
analogous to that just described superimposed identic
with numerically iterated first-return maps. The disadvanta
of this approach is that the points on the map are confine
the domain of attraction of the bursting solutions and do
allow the entire state space to be sampled evenly. W
viewed over a large scalef (c) and f̃ (c) are nearly indistin-
guishable. Thusf (c) will be used for most mappings show
in this study, while f̃ (c) will be utilized when the map is
examined at a fine scale.

The use of these maps is only appropriate for locat
bursting solutions. In many parameter regions a beating
lution may coexist. The existence of a stable beating solu
may be implied by the existence of regions of discontinu
in f (c), i.e., those initial conditions onHC1 that never cross
HC1 again. However, such features off (c) are not necessary
for a stable beating solution to exist, and the existence
such a solution must be verified by alternative means.
example, stability analysis of the intersection of the avera
nullclines is typically sufficient to predict the stability of th
beating solution.25

V. RESULTS

A. From bursting to beating

Canavier et al.2,3 illustrated several pathways from
single bursting limit cycle to a single beating limit cycle as
parameter is varied. These pathways involved varying c
ductances and or the applied current. Typically, as a par
eter was varied, the dynamics progressed from a single st
bursting limit cycle to a multirhythmic state with many co
existing bursting solutions to a single stable beating soluti
We have observed similar pathways in our minimal mod
For the results shown here we choosets , the time constant
of the slow variables, as our bifurcation parameter. We hav
chosen this parameter for ease of presentation: The FA
subsystem bifurcation diagram~including the calculation of
HC! and steady-state solution manifoldsAP andVSSdo not
depend on this parameter. Thus the nullclines,HC and



p

le
tl
t
e

on
h

ic
e
ith
.
ie

nt

a

ble

f
ng

9
-2

se
p-
m-

ous,
u-
ere

en

nd

t

e

ver
s of
he

ing
de

ble
or

le

nd

y.

278 Chaos, Vol. 8, No. 1, 1998 Robert J. Butera, Jr.
steady-state solution surfaces shown in Figs. 1~B!–1~C! and
2 are valid for all values ofts— only the solution trajectories
vary with ts .

Figure 3 illustrates the numerically calculated mapsf (c)
for six different values ofts . Panel~A! illustrates the map
obtained using the value ofts corresponding to the bursting
limit cycle solution illustrated in Figs. 1 and 2. This ma
possesses a single stable fixed point~black arrow! and is
relatively flat ~i.e., contractive!, with most initial conditions
converging to the fixed point quickly. The most noticeab
feature of the map is that it consists of many apparen
discrete, smooth curve segments. Each curve segmen
separated by a steep transition region which requires
tremely high resolution to map at low values ofts . Further
examination of the data, supported by numerous simulati
from a variety of initial conditions, revealed that within eac
curve segment the first-return trajectory contains an ident
number of action potentials. For example, the curve segm
containing the fixed point contains all burst trajectories w
initial conditions onHC1 that contain 9 action potentials
The curve segment to the left contains all burst trajector

FIG. 3. First-return mapsf (c) for various values ofts . Solid arrows indi-
cate stable fixed points. See text for description of open arrow.
y
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with initial conditions onHC1 that contain 10 action poten-
tials, the curve segment to the right, 8 action potentials.

As ts is increased from 300 ms, each curve segme
becomes more U-shaped andf (c) becomes less flat. Figure
3~B! illustratesf (c) whents5400 ms. This map also has
single stable fixed point~black arrow!. This figure elucidates
the nature of a transition between limit cycles withn andn
11 action potentials as a parameter is varied. The sta
fixed point in panel~B! corresponds to a limit cycle with 8
action potentials. Asts is decreased,f (c) shifts downward
@compare with panel~A!#. This downshift inf (c) increases
the slope off (c) at the fixed point. A local examination o
the map shows that it loses stability via a period-doubli
bifurcation. A new stable fixed point emerges~near white
arrow! corresponding to a stable limit cycle solution with
action potentials. This solution coexists with the period
solution with 8 action potentials. Asts is further reduced, the
period-2 solution with 8 action potentials continues to lo
stability via a period-doubling route and eventually disa
pears. This transition occurs over a narrow range of para
eters. However, the general mechanism appears ubiquit
at least within the context of our model. We have, via n
merical simulation, located several parameter regimes wh
a period-1 bursting limit cycle withn11 action potentials
and a period-2 bursting limit cycle withn action potentials
co-exist. We have identified similar transitions betwe
bursting limit cycles ofn and n11 action potentials as a
parameter is varied in the bursting model of Rinzel a
Lee.13

As ts is further increased,f (c) becomes more divergen
and the curve segments at higher values ofc rise toward the
identity line. In Fig. 3~C!, the map consists of only unstabl
fixed points. There exists a region of the map~indicated by
the square box! that is an attractor, i.e., the range off (c) is a
subset of the domain. Trajectories that enter this region ne
leave. The solution trajectory consists of successive burst
anywhere from 2 to 6 action potentials, with the nature of t
burst corresponding to which curve segment off (c) each
iterate~i.e., successive burst cycle! falls on. This is one form
of chaotic dynamics exhibited by the model — a chaotic
attractor which spans burst trajectories that contain a vary
number of action potentials per burst. We refer to this mo
of activity as global chaotic bursting.

At a higher value ofts ~515 ms, not shown!, f (c) shifts
upward slightly and the fixed point at the lowest value ofc in
Fig. 3~C! (c'0.225) becomes stable. In this case a sta
bursting limit cycle exists, but convergence is quite slow f
initial conditions onHC1 where 0.225,c,0.32. We at-
tribute this to the existence of several marginally unstab
fixed points in f (c). Trajectories with initial conditions in
this region may take many cycles~20 or more! before finally
converging to the stable bursting limit cycle. We have fou
parameter regions of the model of Canavieret al.1 that also
exhibit this phenomena.

For some parameter values~Fig. 3~D!, ts5529.1 ms!
f (c) possesses multiple stable attracting solutions~black ar-
rows!. This map will be examined in greater detail shortl
As ts is further increased,f (c) starts to contract and the
number of fixed points~stable or unstable! decreases, with
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most of f (c) existing above the identity line. In Fig. 3~E!, a
single burst solution~with two action potentials per burst!
exists. Finally, in Fig. 3~F!, f (c) no longer possesses any
stable fixed points. A stable beating solution exists at th
parameter set, implied by discontinuities inf (c).

B. Multirhythmic solutions

Figure 4 illustrates the mapf̃ (c) for ts5529.1 ms. Pan-
els I–IV illustrate closeup views of four regions off̃ (c).
Each of these regions corresponds to a stable bursting s
tion. These four solutions are illustrated in Fig. 5. Panel I
Fig. 4 illustrates a stable fixed point and corresponds to t
period-1 solution labeled I in Fig. 5. Panels II–IV do no
illustrate regions off̃ (c) with stable fixed points. Rather, in
each of these panels is illustrated a local region off̃ (c)

FIG. 4. First-return mapf̃ (c) for ts5529.1 ms. To the right of the figure
are expanded views of the boxed regions I–IV. Each of these regions id
tifies a corresponding limit cycle in Fig. 5.

FIG. 5. Multirhythmic bursting. Trajectories I–IV correspond to simila

labeled regions off̃ (c) in Fig. 4. Trajectories II–IV are chaotic. Insets
illustrate time course of membrane potential for each solution. For ea
inset, the scale bar indicates 2 s and 20 mV.
is

lu-
f
e

where the range off̃ (c) is a subset of the domain. Each o
these regions is reminiscent of an upside-down logistics m
and acts as a dynamic equivalent of a ‘‘potential well’’ —
once the limit cycle trajectory maps into this region it cann
leave. These attracting regions of the map without sta
fixed points suggest chaotic dynamics, illustrated by the c
responding (c,s) trajectories in Fig. 5. Additional numerica
simulations have verified the stability of each of these
gions of attraction. While each attractor may appear to h
chaotic dynamics, the number of action potentials with
each burst is identical from cycle to cycle. This contra
with the global chaotic bursting described earlier as a re
of an attracting region that spanned over several curve
ments off (c).

C. Origin of multirhythmic bursting

What dynamical features of our bursting model give r
to return maps with multiple stable attractors? The sta
space dynamics of the model fall into two regions. When
trajectory lies onVSS, it is dynamically a second-order sys
tem. When the trajectory lies onAP, the dynamics of the
model are still largely determined byc and s, subject to
perturbations associated with the firing of each action pot
tial. We now decomposedf (c) into two separate maps,g(c)
and h(c), where f (c)5h(g(c)). Thusg(c) describes how
points onHC1 map toHC2 and h(c) describes how these
trajectories return toHC1as a function of where they crosse
HC2. Figure 6 illustratesg(c) and h21(c) for each of the
correspondingf (c) maps shown in Fig. 3. In each panel
Fig. 6, the intersections ofg(c) and h21(c) correspond to
the fixed points illustrated in Fig. 3. We will often refer t
the slope ofh(c) in the following paragraphs, even thoug
Fig. 6 illustratesh21(c).

There is a certain degree of inaccuracy in our calculat
of h(c). Ideally, we would take initial conditions onHC2
and calculate how those trajectories map toHC1. However,
as indicated earlier, on crossingHC2 the solution trajectory
does not instantaneously jump fromAP to VSS. For this rea-
son we have calculatedh(c) as described earlier, so tha
g(c) andh(c) truly represent a decomposition off (c) that
was calculated numerically.

The segmentation off (c) is evident in the segmentatio
of g(c) as well. Each curve segment ofg(c) corresponds to
those paths fromHC1 to HC2 that contain an identical num
ber of action potentials. However, unlikef (c), as ts is in-
creased, there is little change in the shape ofg(c). As ts is
increased,g(c) actually becomes more contractive, contra
to the change inf (c). The maph(c) undergoes a significan
change in shape asts is increased. Whents5300 ms@panel
~A!#, h(c) is very contractive — most initial conditions o
HC2 map to a narrow region ofHC1. In this case the seg
mentation ofg(c) is irrelevant, sinceh(c) maps most points
on HC2 to a single curve segment ofHC1, and only a single
stable limit cycle exists. Asts is increased,h(c) becomes
more dispersive and the dispersive region ofh(c) ~where its
slope is steep! shifts toward higher values ofc. Thus, asts is
varied,h(c) effectively sweeps acrossg(c). The interaction
of these two functions gives rise to the complex maps ill

n-

h
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trated in Figs. 3~C! and 3~D!. As ts is further increased,h(c)
continues to shift towards higher values ofc, reducing the
number of intersections withg(c) @and thus the number of
fixed points off (c)].

It is possible to do an exhaustive examination of the flo
field of (c,s) to more rigorously determine the nature o
g(c) andh(c). However, the results up to this point allow u
to postulate several sufficient criteria for a bursting model
be capable of exhibiting multirhythmic solutions of the typ
described here and in Canavieret al.2,3

~1! The system must have two slow variables. In models
with a single slow variable bursting arises by couplin
the slow variable to a bistable FAST subsystem. Hyste
esis is employed so that the solution trajectory alterna
between the equilibrium solution branch and the period
solution branch of FAST. In such bursting models with
single slow variable, the burst typically begins and en
at specific values of the slow variable.22 In our minimal
model the burst begins and ends at a specific value ofgSI

FIG. 6. Decomposed first-return maps for various values ofts . g(c) and
h(c)21 are illustrated for each parameter value. See the text for details
the calculation ofg(c) andh(c).
o

r-
s

c

s

defined by a combination of two slow variables. Th
there is a continuum of values of (c,s) ~i.e., HC! where
the burst may begin or end.

~2! Each action potential has a discrete and sizable effect
one or more of the slow variables.More generally, the
dynamics of the fast variables happen on such a fast t
scale that their effects on one or more of the slow va
ables appear as discrete impulse-like events.

~3! A single burst should not have ‘‘too many’’ action po
tentials.This concept is model dependent. Criteria 2 a
3 gives rise to a situation where the dynamics of t
system in the space of the slow variables is not ac
rately predicted by simply averaging the effects of t
action potentials on the slow variables.24 These two cri-
teria cause the noticeable segmentation ofg(c).

~4! The dynamics of the slow variables on VSS should
converge to a strongly attracting limit cycle.Many mod-
eled bursting systems are constructed by adding a
process~i.e., action potentials! to a slowly varying limit
cycle.16,27 In such models, the solution trajectory durin
the silent phase of the burst cycle converges to the li
cycle solution that exists in the absence of action pot
tials ~i.e., gNa50). However, in such situations w
would expecth(c) to be highly contractive, as all initia
conditions onHC2 would converge to the limit cycle o
the subthreshold oscillation during the silent phase of
bursting limit cycle. Ifh(c) is strongly contractive then
as illustrated in Fig. 6~A!, only a single limit cycle will
exist. In both our model and the model of Canav
et al.1 multirhythmic bursting solutions exist at param
eter ranges where a subthreshold oscillation does
persist whenI Na is removed from the model.

D. A general model

We sought to implement the above criteria in the si
plest possible dynamical system. Our model consists of th
variables. The two slow variablesx and y form a second-
order underdamped linear system. The only fixed point of
second-order system is a fixed point at the origin that
haves as a weakly stable focus. This system is coupled
fast phase variableu defined over the range 0 to 2p. The
dynamics of this variable are dependent ony. Wheny,0, u
converges toward a stable fixed point. Wheny.0, u in-
creases at a rate that is dependent ony. When u passes
through a critical valueucrit , it feeds back ontox andy via
a Dirac delta function to perturbx andy. The formulation of
u is similar to that presented in Baeret al.24 The complete
set of equations for the general model is:

u̇5v f ~12cos~u!1y!, ~6!

ẋ5ax1by1d~u2ucrit !r p cos~up!, ~7!

ẏ52bx2ay1d~u2ucrit !r p sin~up!, ~8!

whered is the Dirac delta function anda50.03, b51, v f

525, ucrit5p/2, r p50.1, andup5p/72. Compared to our
minimal bursting model,y50 is analogous toHC. Just as
the frequency of firing of our FAST system starts at zero a
increases asgSI is advanced pastgHC , the frequency ofu is

n
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initially 0 and increases asy is advanced past 0. The param
etersr p andup describe the effect of each perturbation on t
x andy variables.

Figure 7~A! illustrates the dynamics of the above syste
in (x,y) using the above parameter set. When numerica
integrating the above system, care was taken to not integ
the solution trajectory across time points where the Di
delta functions are triggered. The general model possess
coexisting bursting solutions, labeled I–VIII. The small
panels at the right of Fig. 7 illustrate the temporal nature
each solution trajectory by plotting sin(u) vs time. Figure
7~B! illustrates a numerically calculated first-return ma
This map was calculated by choosing as a Poincare´ section
positive crossings ofy50 and is analogous to the mapsf (c)
calculated for our minimal model.

E. A complex biophysical model

We wished to apply the techniques used to calcul
f (c) to the model of Canavieret al.,1 a much more complex
model with 11 state variables. The mechanism of bursting
their model is based on two slow variablesc and s which
modulate a slow-inward Ca21 current similar to that pre-
sented in our minimal model. A FAST–SLOW analys
similar to that described in Section IV was performed on

FIG. 7. An idealistic model of multirhythmic bursting.~A!. Solution trajec-
tories of eight coexisting bursting solutions in the phase space of the
slow variablesx andy. Panels I–VIII illustrate the time course of sin(u) for
the corresponding solutions in panel~A!. ~B!. First-return map obtained by
using positive crossings ofy50 as a Poincare´ section. The scale bar in
panel VIII indicates 2 s and 0.5~unitless! and is valid for panels I–VIII.
ly
te
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variation of the model of Canavieret al.1 This model7 pos-
sesses a state space geometry28 similar to the minimal model
presented in this paper, with the key differences between
two models described below. Furthermore, we have de
mined that the state-space of the model of Buteraet al.7 is
geometrically similar to the model of Canavieret al.1 ~un-
published observations!.

The analysis of our minimal model exploited the fa
that the two slow variables combined to parametrize the s
tem of fast variables in a single functional expression. T
single quantity defined the location ofHC in (c,s) and was
used as our Poincare´ section. Unfortunately, the model o
Canavieret al.1 has several other currents~for example, a
Ca21-extrusion pump and a Na1-Ca21 exchanger! which are
also dependent on the slow variablec. In this caseHC can-
not be expressed by a single functional expression ofc ands
and must be numerically calculated at any given value
(c,s). Such a calculation is quite possible, but utilizing th
numerically calculated curve as a Poincare´ section in (c,s) is
much more tedious. However,HC is nearly isopotential,
varying only by a few mV across the dynamic range ofc and
s. Thus we defined our Poincare´ section as positive crossing
of a predefined membrane potentialVc , whereVc is a value
close to but less than the minimal value ofHC ~in V) over
the dynamics range of (c,s) to be investigated. Initial con-
ditions were chosen along the line formed by the intersec
of the planeVc with the surfaceVSS. These were calculated
for a given value ofc by settingV to Vc , all other variables
excepts to their steady-state values~which are defined in
terms ofV andc) ands to the value necessary to ensure th

V̇50 ~the definition of points onVSS!. Parameters of the
model were set identical to those used to generate Fig.
Ref. 2.

The mapsf (c) were much less accurate at indicating t
dynamic activity of the model than the maps calculated us
our minimal model. This is due to several reasons. First,
model of Canavieret al.1 possesses a coexisting beating s
lution, so for some initial conditions the solution trajecto
never crossed the Poincare´ section again. Second, it was ne
essary to adopt an ad-hoc criterion based on the valu
dV/dt to determine if crossings ofVc were due to the begin
ning of a burst or successive firings of action potentials d
ing the burst. Third, their model possesses two additio
‘‘slow’’ state variables that are only active during the firin
of action potentials and decay~on a faster time scale! back to
steady-state values during the interburst interval. As bef
these problems were alleviated by using the second b
cycle from each initial condition to define the approxima

first-return mapf̃ (c). The accuracy of these maps was ve
fied by comparing the second-return map obtained by ite
ing f̃ (c) with the second-return map obtained analogous
the procedure just described.

Figure 8 illustrates the periodic burst solutions in (c,s).
These solutions are labeled in a similar manner as Fig. 2
Ref. 2. The mapf̃ (c) is shown in Fig. 8~B!. Regions of
f̃ (c) enclosed by a box predict the bursting solutions
panel A and are shown as expanded insets at the right o
figure. In the insets,f̃ (c) is represented by circles andf̃ 2(c)
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by plus signs. The most striking feature off̃ (c) is that it is
qualitatively similar in shape to Fig. 4, although the numb
of curve segments which cross the identity line is ev
larger. Each of the insets identifies mappings which are c
sistent with the observed limit cycles shown in panel~A!.
Trajectory I is a stable limit cycle and corresponds to a sta
fixed point of f̃ (c). Trajectories III, IV, and V are period-2
solutions. The corresponding insets reveal that each of th
solutions is confined to a region off̃ (c) where the fixed
point is marginally unstable, having recently undergone
period-doubling bifurcation. The second return mapsf̃ 2(c)
each possess two stable fixed points identifying the perio
solutions. The chaotic trajectories II and VI correspond
regions of f̃ (c) where the fixed points are unstable but t
mapping f̃ (c) possesses an attracting region where the ra
of f̃ (c) is a subset of the domain. The two curve segme
between solutions I and II contain neither fixed points n
stable attracting regions.

Our indirect approach for estimatingf (c) with the
model of Canavieret al.1 may not find every possible burs
ing solution. Since our algorithm is based only on membra
potential, it is necessary to determine the end of a burs
that the following positive crossing ofVc is known to indi-
cate the beginning of a new burst cycle. Whether a nega
crossing ofVc is the repolarization of an action potential
the hyperpolarizing phase of the depolarizing after-poten
~DAP, which occurs at the end of each burst! is determined
by the value ofdV/dt at the time of the crossing. IfVc is set
too high, it is possible that the DAP never crosses it. IfVc is
too low, it is possible that some burst trajectories in th
silent phase do not hyperpolarize belowVc . Canavieret al.3

FIG. 8. Multirhythmic bursting in the model of Canavieret al. ~Refs. 1 and
2! ~A!. Six co-existing bursting solutions in the phase space of the two s
variablesc and s. Similar to Fig. 2 of Canavieret al. ~Ref. 2!. ~B!. First-

return map f̃ (c) for the same parameter set. Boxed insets are blown u
right and correspond to the similarly labeled solution trajectories in pa

~A!. In the insetsf̃ (c) is indicated by circles andf̃ 2(c) by plus signs.
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identified an additional bursting solution with the parame
set studied in this paper which was not located by our al
rithm. None of these issues is a problem in our minim
membrane model, which clearly identifies the beginning a
end of each burst by positive and negative crossings ofgHC ,
which are easily calculated in terms ofc ands.

VI. DISCUSSION

In this study we have investigated multirhythmic burs
ing in a minimal membrane model. From those results,
proposed qualitative mechanisms that may combine to c
tribute to this multistability and tested those mechanisms
general three-variable model. Finally, we demonstrated
the multistable solutions exhibited by our membrane mo
appear similar to those of the more complex model
Canavieret al.1 In both models the multistable bursting s
lutions are nested in the state space of the slow variables
differ by the number of action potentials in their limit cycle
Both models also possess similar mapsf̃ (c).

One difference between thef (c)’s calculated from both
membrane models and the general model is the shape of
curve segment. For the membrane models they are U-sha
initial conditions at each end of a curve segment map
similar regions. The curve segments calculated for our g
eral model are more linear, although they do appear to ro
up at the positive end of each segment. Quite certainly
general model loses a bit of both complexity and realism
approximating the perturbational affects of the action pot
tials as discrete perturbations. Terman29 has performed a de
tailed analysis of the transition between bursts ofn and n
11 action potentials in a bursting model with a single slo
variable. It is possible that a variation of his approach m
shed some light on the nature of shape of each curve
ment.

It would be quite difficult to identify multistable bursting
in a real biological preparations. Our results show that thi
a transitional phenomenon in the parameter space betw
bursting and beating, and immediately adjacent to mu
stable regions in parameter space may be regions wher
stable solution trajectories exist and the bursting is chao
However, the multistable solutions are surrounded in para
eter space by larger regions wheref (c) is still complex. In
these regionsf (c) has a similar shape and suggests that c
vergence to a stable limit cycle, if one exists, may take ma
limit cycles. Our data reveal~not shown! that the length of
each burst cycle is somewhat determined by which cu
segment off (c) the current cycle started from. Thus it ma
be possible to construct a map with a structure similar
f (c) by biasing the neuron to a regime of irregular bu
firing. In our model, the structure of such maps was m
evident when plotting the duration of each interburst inter
versus the duration of the interburst interval of the previo
cycle. However, given the inherent variability of biologic
preparations, the data may not unambiguously reveal
structure in such a map. An even simpler approach would
to employ the method of symbolic dynamics30,31to analyze a
bursting time series for recurring patterns. In such an
proach, the number of action potentials in each burst is
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signed a symbol. A time series of burst cycles is converte
a string of symbols denoting the number of action potent
in each burst. An examination of words~substrings of suc-
cessive symbols! may reveal common words or forbidde
words. For example, it is evident from Fig. 4 that a burst
n action potentials (2<n<5) may only be followed by a
burst of 2 to min(n11,5) action potentials. Similar struc
tures may be apparent in experimental recordings.

Even if such multistability was identified in a biologica
preparation, it would be a subject of great speculation ho
nervous system would exploit such a feature. However,
features identified in this study could be exploited for ma
made applications. Alternative formulations of our gene
model @primarily Eq. ~6!# give rise to systems which woul
be amenable to analytical treatment. These near-linear
tems could be easily implemented with existing integra
circuit components. It may be possible to design oscillat
circuits that have many more than the 8 stable limit cyc
demonstrated in our general model. Unlike chaotic attract
which are often described as an infinite collection of unsta
periodic solutions, these circuits would have a finite num
of periodic solutions. Such circuits could possibly have a
plications in communications32 ~e.g., the encoding/decodin
circuits could choose from multiple coexisting chaotic osc
lations! or as a novel form of dynamic memory.33,34To date,
multistable systems based on delayed feedback have
constructed from both optical33–35 and digital36

components.19
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APPENDIX: Model Description

The following equations define the equations and para
eters functions referenced in Eqs.~1!–~4!.

1. Equations

I Na~V!5 ḡNam`~V!~V2ENa!,

m`~V!5 1
2 ~11tanh~~V2am!/bm!!,

I K~V,w!5 ḡKw~V2EK!,

w`~V!5 1
2 ~11tanh~~V2aw!/bw!!,

tw~V!51/cosh~~V2aw!/~2bw!!,

I SI~V,c,s!5gSI~c,s!~V2ECa!,

gSI~c,s!5 ḡSI

s

11bc
,

s`~V!5 1
2 ~11tanh~~V2as!/bs!!,

I L~V!5 ḡ L~V2EK!.
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2. Parameters and units

Time is in ms, membrane potential in mV, concentrati
in mM, and gating variables are unitless. Current and c
ductances are normalized to cell capacitance and thus
the units mV/ms and ms21, respectively. All other param
eters are expressed in terms of these quantities. The valu
ts is specified in the text for each simulation:

ḡNa50.2 V/s, ḡK50.4 V/s, ḡSI50.05 V/s,ḡ L50.1 V/s,
ENa555 mV, EK5275 mV, ECa5120 mV,am5225 mV,
aw5220 mV, as5245 mV, bm514 mV, bw510 mV, bs

515 mV, b510.0 mM21, I STIM51.1 V/s,kNa51.231024

mM/mV, kSI52.531025 mM/mV, kc5531025 ms21

1 C. C. Canavier, J. W. Clark, and J. H. Byrne, ‘‘Simulation of the bursti
activity of neuron R15 inAplysia: Role of ionic currents, calcium balance
and modulatory transmitters,’’ J. Neurophysiol.66, 2107–2124~1991!.

2C. C. Canavier, D. A. Baxter, J. W. Clark, and J. H. Byrne, ‘‘Nonline
dynamics in a model neuron provide a novel mechanism for trans
synaptic inputs to produce long-term alterations of post-synaptic ac
ity,’’ J. Neurophysiol.69, 2252–2257~1993!.

3C. C. Canavier, J. W. Clark, D. A. Baxter, and J. H. Clark, D. A. Baxt
and J. H. Byrne, ‘‘Multiple modes of activity in a model neuron sugges
novel mechanism for the effects of neuromodulators,’’ J. Neurophys
72, 872–882~1994!.

4H. A. Lechner, D. A. Baxter, J. W. Clark, and J. H. Byrne, ‘‘Bistabilit
and its regulation by serotonin in the endogenously bursting neuron
in Aplysia,’’ J. Neurophysiol.75, 957–962~1996!.

5E. Marder, L. F. Abbott, G. G. Turrigiano, Z. Liu, and J. Golowasc
‘‘Memory from the dynamics of intrinsic membrane currents,’’ Proc. Na
Acad. Sci. USA93, 13481–13486~1996!.

6J. Hounsgaard and O. Kiehn, ‘‘Serotonin-induced bistability of turtle m
toneurones caused by a nifedipine-sensitive calcium plateau potentia
Physiol.~London! 414, 265–282~1989!.

7R. J. Butera, J. W. Clark, C. C. Canavier, D. A. Baxter, and J. H. Byr
‘‘Analysis of the effects of modulatory agents on a modeled burst
neuron: Dynamic interactions between voltage and calcium depen
systems, ’’ J. Comput. Neurosci.2, 19–44~1995!.

8V. Booth and J. Rinzel, ‘‘A minimal, compartmental model for a dendri
origin of bistability of motoneuron firing patterns, ’’ J. Comput. Neuros
2, 299–312~1995!.

9A. Goldbeter,Biochemical Oscillations and Cellular Rhythms~Cambridge
University Press, Cambridge, 1996!.

10This is partially due to the role of the subcritical Hopf bifurcation in ma
neuronal models. See for example Ref. 36.

11O. Decroly and A. Goldbeter, ‘‘Selection between multiple periodic
gimes in a biochemical system: Complex dynamic behaviour resolved
use of one-dimensional maps,’’ J. Theor. Biol.113, 649–671~1985!.

12J. Foss, A. Longtin, B. Mensour, and J. Milton, ‘‘Multistability and de
layed recurrent loops,’’ Phys. Rev. Lett.76, 708–711~1996!.

13J. Rinzel and Y. S. Lee, ‘‘Dissection of a model for neuronal parabo
bursting,’’ J. Math. Biol.25, 653–675~1987!.

14R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, ‘‘Topological a
phenomenological classification of bursting oscillations,’’ Bull. Mat
Biol. 57, 413–439~1995!.

15R. Bertram, ‘‘A computational study of the effects of serotonin on a m
luscan burster neuron,’’ Biol. Cybern.69, 257–267~1993!.

16R. E. Plant and M. Kim, ‘‘Mathematical description of a bursting pac
maker neuron by a modification of the Hodgkin-Huxley equations,’’ B
phys. J.16, 227–244~1976!.

17W. B. Adams and J. A. Benson, ‘‘The generation and modulation
endogeneous rhythmicity in theAplysia bursting pacemaker neuron
R15,’’ Prog. Biophys. Mol. Biol.46, 1–49~1985!.

18C. Morris and H. Lecar, ‘‘Voltage oscillations in the barnacle musc
fiber,’’ Biophys. J.35, 193–213~1981!.

19J. Rinzel and G. B. Ermentrout, ‘‘Analysis of neural excitability and o
cillations,’’ Methods in Neuronal Modeling, edited by C. Koch and I.
Segev~MIT Press, Cambridge, 1989!, Chap. 5, pp. 135–169.

20S. D. Cohen and A. C. Hindmarsh, ‘‘Scientific programmingCVODE, a
stiff/nonstiff ODE solver in C,’’ Comput. Phys.10, 138 ~1996!.

21E. J. Doedel, ‘‘AUTO: A program for the automatic bifurcation and analys



ted

it

as

f
e

le
is,
re

he

f

le

a

a-

,’’

oop

rid
y,’’

of
tum

ar

284 Chaos, Vol. 8, No. 1, 1998 Robert J. Butera, Jr.
of autonomous systems, ’’ Congr. Numerantium30, 265–284~1981!.
22J. Rinzel, ‘‘Bursting oscillations in an excitable membrane model,’’ edi

by B. D. Sleeman and D. Jones,Ordinary and Partial Differential Equa-
tions, Lecture Notes in Mathematics, Vol. 1151~Springer-Verlag, Berlin,
1985!, pp. 304–316.

23P. Smolen, D. Terman, and J. Rinzel, ‘‘Properties of a bursting model w
two slow inhibitory variables,’’ SIAM~Soc. Ind. Appl. Math.! J. Appl.
Math. 53, 861–892~1993!.

24S. M. Baer, J. Rinzel, and H. Carrillo, ‘‘Analysis of an autonomous ph
model for neuronal parabolic bursting,’’ J. Math. Biol.33, 309–333
~1995!.

25R. J. Butera, J. W. Clark, and J. H. Byrne, ‘‘Transient responses o
modeled bursting neuron: Analysis with equilibrium and averag
nullclines, ’’ Biol. Cybern77, 307–322~1997!.

26J. Rinzel, ‘‘A formal classification of bursting mechanisms in excitab
systems,’’Mathematical Topics in Population Biology, Morphogenes
and Neurosciences, edited by E. Teramato and M. Yamaguti, Lectu
Notes in Biomathematics~Springer-Verlag, Berlin, 1987!, pp. 267–281.

27R. E. Plant and M. Kim, ‘‘On the mechanism underlying bursting in t
Aplysia abdominal ganglion R15 cell,’’ Math. Biosci.26, 357–375
~1975!.

28R. J. Butera, J. W. Clark, and J. H. Byrne, ‘‘Dissection and reduction o
modeled bursting neuron,’’ J. Comput. Neurosci.3, 199–223~1996!.
h

e

a
d

a

29D. Terman, ‘‘Chaotic spikes arising from a model of bursting in excitab
membranes,’’ SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.51, 1418–
1450 ~1991!.

30V. Daniels, M. Vallieres, and J.-M. Yuan, ‘‘Chaotic scattering on
double-well: Periodic orbits, symbolic dynamics, and scaling,’’ Chaos3,
475–485~1993!.

31H.-P. Fang and B.-L. Hao, ‘‘Symbolic dynamics of the Lorenz equ
tions,’’ Chaos Solitons Fractals7, 217–246~1996!.

32L. M. Pecora and T. L. Carroll, ‘‘Synchronization in chaotic systems
Phys. Rev. Lett.64, 821–824~1990!.

33T. Aida and P. Davis, ‘‘Storage of optical pulse data sequences in l
memory using multistable oscillations,’’ Electron. Lett.27, 1544–1546
~1991!.

34T. Aida and P. Davis, ‘‘Oscillation modes of laser diode pumped hyb
bistable system with large delay and application to dynamical memor
IEEE J. Quantum Electron.28, 686–699~1992!.

35T. Aida and P. Davis, ‘‘Oscillation mode selection using bifurcation
chaotic mode transitions in a nonlinear ring resonator,’’ IEEE J. Quan
Electron.30, 2986–2997~1994!.

36T. Aida, N. Otani, and P. Davis, ‘‘Digital implementation of a nonline
delayed-feedback system,’’ IEEE Trans. Circuits Syst. I41, 238–242
~1994!.


